On a development of the phenomenological renormalization group

نویسندگان

  • O. Borisenko
  • V. Chelnokov
  • V. Kushnir
چکیده

We propose a modification of the Nightingale renormalization group for lattice spin and gauge models by combining it with the cluster decimation approximation. Essential ingredients of our approach are: 1) exact calculation of the partition and correlation function on a finite lattice strip; 2) preservation of the mass gap or the second moment correlation length, computed in the infinite strip length limit, on each decimation step. The method is applied for studying general two and three dimensional Z(N) models. A perfect agreement with exact results (whenever available) is found. An extension of the method to models with a continuous symmetry is briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Dependent Real-Space Renormalization Group Method

In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...

متن کامل

Phenomenological Renormalization Group Methods

Some renormalization group approaches have been proposed during the last few years which are close in spirit to the Nightingale phenomenological procedure. In essence, by exploiting the finite size scaling hypothesis, the approximate critical behavior of the model on infinite lattice is obtained through the exact computation of some thermal quantities of the model on finite clusters. In this wo...

متن کامل

A NUMERICAL RENORMALIZATION GROUP APPROACH FOR AN ELECTRON-PHONON INTERACTION

A finite chain calculation in terms of Hubbard X-operators is explored by setting up a vibronic Harniltonian. The model conveniently transformed into a form so that in the case of strong coupling a numerical renormalization group approach is applicable. To test the technique, a one particle Green function is calculated for the model Harniltonian

متن کامل

A numerical renormalization group approach for calculating the spectrum of a vibronic system occurring in molecules or impurities in insulators

Theoretically, in order to describe the behavior of a spectrum, a mathematical model whichcould predict the spectrum characteristics is needed. Since in this study a Two-state system has beenused like models which was introduced previously past and could couple with the environment, theformer ideas have been extended in this study. we use the second quantized version for writing thisHamiltonian...

متن کامل

Renormalization by Continuous Unitary Transformations: One-Dimensional Spinless Fermions

A renormalization scheme for interacting fermionic systems is presented where the renormalization is carried out in terms of the fermionic degrees of freedom. The scheme is based on continuous unitary transformations of the hamiltonian which stays hermitian throughout the renormalization flow, whereby any frequency dependence is avoided. The approach is illustrated in detail for a model of spin...

متن کامل

Renormalization group analysis of nuclear force

We study a relation between nuclear forces based on phenomenological approach (Vph) and nuclear effective field theory (VEFT ) from a viewpoint of renormalization group. We find the relation between these two types of nuclear force using Wilsonian renormalization group equation. Considering the fact that VEFT is defined in a certain small model space, we show that a simple contact interaction a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014